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-" 1 INTRODUCTION4..

There are three versions of the finite element method: the h-

version, the p-version and the h-p version. The h-version Is the standard

one, where the degree p of the elements is fixed, usually on low level,

typically p = 1,2,3 and the accuracy is achieved by properly refining the

mesh. The p-version, in contrast, fixes the mesh and achieves the accuracy

by increasing the degree p of the elements uniformly or selectively. The

h-p version is the combination of both.

The standard h-version has been thoroughly investigated theoretically

(see eg. [], [9], [19) and others) and many program codes are available,

both commercial and research. The p-version and the h-p version are new

developments. There is only one commercial code, the system PROBE (Noetic

Technologies, St. Louis).1  The theoretical aspects have been studied only

recently. The first theoretical paper appeared in 1981 (see [6)). See

also [2],' [51, [7], [10], [11], [1I] for most recent results. For the

numerical, computational, implementational and engineering aspects of the

h-p version we refer to [3], [20], [21], [22].

The classical form of the error estimate for the h-version with

quasiuniform mesh is
"-. '" (! .1a) S~-FIH a Cwphn-1lo a

where

(1.1b) n = min(k,p+1)

. ! In addition there is code FIESTA for solving 3 dimensional elasticity

problems having p-version features but using only I S p 5 4.

.4
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and the constant C(p) depends on p in an unspecified way. See eg.

[I], [9], [!9] and others.

The main purpose of this paper is to analyze the h-p version with a

quasiuniform mesh and uniform p and get an error estimate which is

simultaneously optimal in both p and h. We show that the estimate (1.1)

can be written in the form

, hn-1

(1.2) luO-uFEl H1U~ C h-1j Jul k
H ) p H )

with

n = min(k,p+1)

and C independent of h,p and u. We will also prove estimates for the

-h-p version when the solution has singularities in the corners of the

domain and in the case when essential (Dirichlet) conditions are prescribed

but are not in the subspace of finite elements. Finally, we will present a

numerical example illustrating the applicability of the developed (asymp-

totic) theory in a range of h and p used in practice.

1
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2. THE NOTATION

For Q c R2 a polygonal domain, x = (x1,x2 ) E we let L2 (Q) =

H0(), Hk(Q), Hk(Q), k 1 0 integer, denote the usual Sobolev

spaces. For u E Hk(g) we denote by IUikQ and lulkQ the usual norm

and seminorm, respectively. For k 0 nonintegral, we define Hk()

and ''k ' by the K-method of the interpolation theory [ 8]. If I is

an interval or a segment, then we define Hk(I), 1.1 I, k 2 0

analogously.

Given p > 0, let R(p) = {(x1 ,x2 ) I 1x11 < P, 1x21 < p}. For any

a C 2  we will denote pa = sup{diam(B) I B a ball in 9}.

The set of all algebraic polynomials of degree (total) less than or

equal to p on 9 will be denoted by P (Q). By P2Cc) we will denote
p p

the set of all polynomials of degree less than or equal to p in each

variable on Q. For r c R2  a straight segment, we define P p(r) as the

set of polynomials on r of degree less than or equal to p in s (s

being the length parameter of r).

Let K > 0. Then by HPER(R()) c Hk(R()) we denote the space of

all periodic functions with period 2K. By T (R()) (T2 (R(<)) we denote
p p

the space of all trigonometric polynomials of (total) degree (degree in

U every variable) less than or equal to p.

,isCCJI, Fo". - -1
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1 ;nrc :LJi..L3

E y -i b. .......................................................,
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3. THE MODEL PROBLEM

3.1. The formulation of the problem.

Consider the following model problem

*(3.1) -tAu +u -f in fl

(3.2a) u - g on r

(3.2b) au = b on r2
n

where 9 C ii2 is a polygonal domain with vertices Ail i= 1,...,n+l, Al

1 - 2 1 -rU r., r = U r r rurT,
i~ij... 'in 1Ji .. i

r is the boundary 30l of Q and ri j =1,...,n, are the open sides

of the boundary 39 (see Fig. 3-1)

An. r. A

ar2

AA

p. Fig. 3.1. The scheme and notation of' t,^e polygonal domain.

t-ga.



The internal angle at Ai is denoted by w. We allow the possibility

that wi = w or 21r. The case wi - 2w describes the slit (cracked) domain

while the case wi = it is introduced to deal with the abrupt change of the

type of the boundary condition or with nonsmoothness of g or b at the

corresponding vertex. When 9 is stated to be a Lipschitz polygonal

domain, then it will be assumed that wi < 21, i = 1,2,...,n.

Let Ho() = {v E H(Q), v = 0 on r 1}. For u,vE HI() we let

(uv)oQ = f uvdx, (u,v) 1, n = f (Vu • Vv + uv)dx. We interpret now

(3.1) and (3.2) in the standard variational sense namely we seek u E

H1 (Q) so that

(3.3a) u - g on r I

and

(3.3b) (uv)! , = (f,v)o, + f bvds|r 2

holds for all v E H0 (Q).

We will assume that the solution u of (3.1) and (3.2) is

(3.4) u -u + u2 + u3

where

(3.4a) u E H k1 () n H( ), kI  > 1

k
2

(3.4b) u2 E H (Q), k2 > 3/2

n

(3.4c) a a E Ho(0)

ct. Y.

*': (3.4d) u3 ,i = ri' Ilog r.I 1 (8)x.(r.)

1 1 1

-. .. *



8

where ri, 61 are polar coordinates with respect to the origin located at

the vertex Ai, Ii > 0, Yi > 0 integer, pi(6i) is an analytic function

in Oi and xi(ri) is the CO cut-off function so that U3 ,1 = 0 for

ri > pi > 0, pi sufficiently small.

The form (3.4) is the typical form of the solution of (3.1) (3.2) (and

of a system of second order) (see eg. [4], [12], [16]). The assumption

that k > 3/2 is usually satisfied in practice and hence is not a severe

restriction.

3.2. The finite element method

Let M = [Th}, h > 0 be a family of meshes Th = {S } where S c

2. 2 is an open triangle or parallelogram. Let h = diam(Sh) and Ph be
Sn S

as defined in Section 2. We shall assume that the family {Th} is regular

in the sense that there exist positive constants a, T independent of h

such that for all S E Th, Th E M

(3.5a) max hh = h
Si

(3.5b) h T
h
S.

h h
S.

(3.5c) - a.

S.

(Condition (3.5b) is obviously the condition of quasiuniformity of the

mesh). Further we assume that with Th  =,2,...

f m h -h.-h
1 S._ and that each pair i', Sh, i i j has either an entire side

4.. or a vertex in common, or has empty intersection.
4.',7
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Let Fh be an affine mapping with Jacobian having positive

determinant which maps S' onto the standard square Q = (-1,1) x (-I,1)
3

when is a parallelogram and onto the standard triangle T = {(x1,x2 )

-< x < 1, 1 < x2 < xI } when Sh  is a triangle. Let now vh() c

SHI () denote the set of functions u such that if uh denotes the
i

'." h~~~~~s' E Th then u h 0 F) I Ep()i h i
restriction of u to S1 S E p (Q) if S isaSi Si

parallelogram and asi °(F )- ' E pp1(Q) if sih is a triangle. We will

then write u h E Pp(S) and u E Vh(Q). Furthermore, we let Vh() =

hu h } p =vh(Q) fl Si(Q

hThe mesh T on a induces a partition ii = {Yh,j 1,

1,2, ..m(i) of r1, i = 1,...,n Denote by Nh , j = O,1,...,m(i) the

nodal points of (i.e. the end points of yh We let Vh(r)
11,3 

p 1

HI( )  be the set of functions u such that the restriction uh of
i'j

u on t is a polynomial of degree p. Moreover, Vh (r) c V (ri)Nph

will denote those polynomials that vanish on 0 j, J =

Let gh E 1 U Vh(r.) be the approximation of g (see (3.2)) described

below. 1

The h-p version of the finite element method consists now (for given

p and h) of finding Up E V ( ) such that

(3.6a) = on

(3.6b) (u,v)1,, (fv)o,2 + 2 bvds

.h
I ~ ~holds for all v EVpf)

To define g~ we denote by g the restriction of g on

" 1  and assume that rwith r

.:.: ... :..-.,:. .-. :..:. . ..- . . .. . . . . - . , . ,.... .. ,.. .... . . ..
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hWe define now gp > 1 so that

""-""bh)h = g(N h ), j=1 ,e,(i), i=i I ..,nl
(3.7b) g,(N ,, .

(3.7c) (g,r )'w'ds = f g'w'ds, ri c r I
r rif ri

holds for all w E Vp(ri).

Remark. If we restrict (3.7b) to j = 0,m(i) only (Nh = A.,
-A0

0N,m(i) - Ai+1 ) ' then (3.7b) is satisfied as a consequence of (3.7c).

ft.•

* , - - *
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4. THE CONVERGENCE OF THE h-p VERSION: THE CASE OF THE SOLUTION u EHk(0)

In this section we will analyze the rate of convergence of the h-p

version when the solution of (3.1), (3.2) has the form (3.4) with u3 = 0.

4.1. Basic approximation results

We present here some approximation results which will play an

essential role later.

Lemma 4.1. Let S = Q or S = T be the standard square or

triangle. Then there exists a family of operators { p}, p = 1,2,3,...,
p

pH(s) Pp(S) such that for any 0 < q < k, u E Hk(s)
p p

(4.1a) ju-; uq < Cp-(k-q)lu, k > 0
pqS

(4.1b) i(a-rpU)(X)I Cp- ( -  'kS k k > 3/2, X E S

where we denote P (S) = Pp(S) for S = Q and P (S) - P1 (S) for S -
p p p p

T. The constant C in (4.1a) (4.1b) is independent of u and p but

depends on k.

Moreover, if u E P (S), then p (u) = u.

p p

Proof. The proof of this lemma is an adaptation of the proof given in

[5 ]. Hence we will only outline the proof.

Let r0 > 1 so that S c R(ro). Since S is a Lipschitz domain,

there exists an extension operator T mapping Hk(S) into Hk(R(2r0 ))

such that

*(4.2a) Tu = 0 on R(2r 0 ) - R(I rO )20

,,C)!



~12

(4.2b) ITulkR( 2r) Clulk,S

where C is independent of u. For a concrete construction of T we

refer, for example, to [4], [18].

Let 0 be the one-to-one mapping of R(1) onto R(2ro):

(4.3) R(2r o) ) x = (x1,x2) = €( )

= (2r0 sin EI, 2ro sin &2 )

- with (&i 12) E R().

Further, we let

(4'.4) R 0- ( r )I c R(-)
2 0 2

where ¢- denotes the inverse mapping of €. Let v = Tu and

- (4.5) V() = v( ( )).

'- - Because of (4.2a) we easily see that

(4.6) Supp V( ) c R.

In addition it can be readily seen that

" . (4.7a) V HPE (R(7)

"-.-,14.7b) Pvlk,R(n) _ Clulk,s ,

(4.7c) V( ) is a symmetric function with respect to the

" lines i = -  1,2.20

Let us expand the finction V in terms of it3 Fourier series

",'*,"

.'' " " . " - "'""" ". " "''' " "" " ' -"." "' ' ,.".- " " ",Z " '' - . ." " 2 " "" , " """ "" -. ""' ,." " -' 2 ' " ''' ''..,
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-6 V(& X a jie
* ~ 9~J=

For any p 1 we define

i) for S =Q:

(4-8a) ~ iV a 1 2

p ji.kp It I <p

i) for S =T:

(4.8b) V a e 2

Then quite similarly as in [5] we have for 0 q k

(14. 9a) IV-; p VqROOlr Cplu k>1 0

(4.9b) I(V-i V(W)I Cr(k1)Iksk>32

Because (i PV)(gD-lx)) E PP(S) and 0 is a regular napping of R(r0 ) (ro

<-)on S, (4.9) yields immediately the lemma.

Let us quote now the following scaling result.

Lema 4.2. Let Q and Qh be two open subsets of 1 such that

there exists an affine mapping F(x) = B(x) + b of Qh onto Q and F(Qh)

= Q2. Let diam(Q) = 1, pQ K, diam(Qh) h, p sh R h. If the

function 1 E HM(Q), m 1 0 integer, then v o F E Hm(Qh) and

n
-M

(4.10a) Vm'Qh Ch 2Q

IA



- N.'- I~

-7 -7- 77 7 V - 27

1: (4. Ob) IVm,a Ch Ivim,Qh

where C depends on K and K but not on 9, h, v.

-:. -:For the proof see [9J, Theorem 3.1.2

The estimate of the error of the approximation of g by h given

in

Lemma 4.3. Let r > 1, 0 t 1, p 2 1, then

(4.11a) h crAtI II-pi h - r-th
' "' ,t, iY p r, Y~

i ij

" ::: h v- t

(4.11b) Ig- C r- I r
. p

where

(4.11c) v = min(r,p+1)

and C is independent of g, p and h.

The proof is given in [13]. The main idea is to expand g' in

Legendre polynomials on every Yh of the partitioning of ri  induced by

the mesh Th, prove (4.11) for r and t integral and by the interpola-

': tion argument obtain (4.11) in fill generality.

Let us prove now

-'.'. Lema 4.4. Let Sh and S be the triangle or parallelogram

satisfying the conditions of Lemma 4.2. Then for any E H<(Q)

corresponding to the function u E Hk nh), k > 0 we have

,5 . -
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(4.12) inf P Ch"-1 Ju
PEk, ( k )~

where u = min(p+1,k) and C depends on K, K, k but is independent of

p and u.

Proof. For k = 0 the result follows immediately from Lemma 4.2

taking = 0. Hence let k > 0. Assume first that k is an integer.

Then

inf Iu-Ik< inf + I
PEP ( PEP () i=+l I'+

where 0 for k < . + 1. Using Theorem 3.1.1 of [9], we see that
. " ,.." i= +1

~~~inf I-I, <C [IG

PE P (9) i1

k
< C hi-lul h (by 4.lOb)

i=i,

< lulh
4,.

-and (4.12) is proven for k integer. For general k we use an

interpolation argument.

Let us prove now

Lemma 4.5. Let Sh be a triangle or parallelogram with vertices

A1  satisfying conditions (3.5). Let u E H k(Sh). Then there exists a

constant C depending on k, T, a but independent of u, p and h and

a sequence Zp E P (Sh), p = 1,2,... (see def. of pp(Sh ) in Section 3.2)

such that for any 0 q . k

,'9".
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(4.13a) u-z s k-i L  u  2 E
p k,S

"-"....(4.13b) 7(- (~l C -k1 Jul k > 3 /2, x E Sh

,'-..p k,S

( 4 .13c) . min(p+1,k).

If k > 3/2, then we can assume that zh(A.) = u(Ai).

Proof. Let fp be the operator introduced in Lemma 4.1. Define now

Tr: Hk(Sh) * P (Sh)

so that

-u= ( ( o F-)) o F
p p

where F is the linear mapping of Sh onto T, respectively Q (see

Section 3.2). Denoting Q = u o F-1  we get from Lemma 4.1 and 4.4 for

(414) l-;p ulq,s = (up) -i 4is

",, "°-

".-.'.- ~Cp- - )  inf l - l ,

PEPp(S)

- . ' . v C - ( k - q ) h u - 1 '

k,S

Combining (4.14) with Lemma 4.2 we get for 0 < m - q k

.-... S h  Ch"-mp - ( k - q )
iU,,. 5hb Jl s"

and hence

" d'" '

eq "
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(4.15) u-1Tp, u h h"qp-(J-l Sh.

q,S k,S

Now analogously for k > 3/2 and x E S

1 inf IuPIkS

PEPp(S)

( k -1 ) -1
Scp (k)h- ul kSh

and (4.13) is proven.

If k > 3/2, then we can modify z by a linear function if S is a

triangle or a bilinear function if S is a parallelogram so that zh(A =

*u(Ai). Using (4.13b) it can be readily seen that (4.13a) will hold once

again for this modified function.

The proof of the following theorem is a modified version of Theorem

4.1 in [5].

Theorem 4.6. Let u be the solution of (3.1-3.2), u E Hk(g),

k > 3/2 and for ri  r1 let gi E Hr(ri ) , r _ k - Y2, where gi is the

restriction of g to ri . Then for each p 2 1 and h > 0, there

exists E Vh(Q) such that

(4.17a) Ph h on

p p

(4.17c) U = min(p+1,k)

where gh is defined by (3.7) and C is independent of 'A, p, h, and Th.

First we will introduce

'4

gA

*qpl
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Lema I.7. Let S=Q or S= T andlet Y= AI A2  beasideof

S. Let $ E Pp(Y) such that (Ai) = 0, 1 = 1,2. Then there exists an

extension v E Pp(S), v = j on Y, v = 0 on aS-Y and

where the constant C is independent of p and '.

-The lemma is a special version of Theorems 7.4 and 7.5 presented in

the Appendix.

Proof of Theorem 4.6. Let {S } = Th. Then by Lemma 4.5 there

exists z i E p(Sh) such that z, = u at all vertices of S Let

pi p i
hJ-. o gh -h

now Y= n g and let NJ, N2  be the end points of Yh. Then zh ,1 -

h = wh, is a polynomial on yh of degree at most p, and wh (N =

0, i - 1,2. We now map 9 U onto S U 9 by a continuous linear

mapping F where Sj and S£ are congruent images of Q or T, suitably

placed as shown in Fig. .1.

Using the notation used in the proof of Lemma 4.5 we get, by Lemma 4.5
hP-1

I-2-,hI 1,s - C --"-- lul h-.skS

- zhp !,St is analogously bounded. Hence on Y we get by the imbedding

theorem

^hh

< C h -

_ ---- lu! h lul h.
p k,S1  k,S

Lr.,
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F
I
iS s;-st

Fig. 4.1. Scheme for the map of two neighboring elements.

Applying Lemma 4.7 there exists i EP(Sj) so that

-, Al,s _S I jZ 1112,y

,.4 = Qj, on Y

and

4' = 0 on S - Y.

Hence we can modify zh to f, so that Zh = Z, on Y and

-h h -

SIz Pj-ul h - C h-- (1'ul h + lul h).
is p k,S1  k,S

Repeating this process we construct ,j similarly on each Sh.

Defining so that its restriction on Sh is Ih we get h EV (P)

p P P

,--" (" ,"2 ." --7 IuIk,-
* p
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20

-. a h he oh

Finally if as l R , 'we have to modify z so that

j 3 on h Using (4.11a) and realizing that

Igl2 < 2
r:- , yh. ri

we can proceed quite analogously as before and complete the proof.

.*- Remark. By the imbedding theorem we have lgik_ , i lul, and

hence the second term in (4.17b) can be omitted.

4.2. The approximation results for 1 < k < 3/2

In the previous section we analyzed the case when the solution u of

(3.1) (3.2) belongs to Hk(Q), k > 3/2. We will now analyze the case

when u E Hk(Q), 1 < k < 3/2 and g = 0. In addition, we will assume

that Q is a Lipschitz domain.

~. . As shown in [4], given any t > 0 and k > 1, the function u can be

decomposed so that

(14.19) u = v t + t

v E q 9
'

:.--1 1A~ E Hk(SQ) j H

and for any k< > q>1

(4.20a) vt I, - t-1 lul1q,

t< q-k
.... (4.20b) .. tl. ..... . ., .
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Let 2 > k > 3/2, and 1 q < 3/2. Then by Theorem 4.6 there

exists (phE Vh(a) such that

4-.:

.( = 0 on i

°-P. '

~since for p > I, mln(p+1,k) = k. Hence

lu-' 1, <  IvtIl~ + Jwt- plI13

-Ik-i hine fr pk H

- "< c(t - + k-1 t - )Iulq,g.

(4.21) lu- I1P - c( ) lUll = C hT lulq,,

since

min(p+1 ,q) q, q 3/2.

: We remark that the assumption that 9 is a Lipschitz domain was used in the

proof of decomposition (4.20). (4.21) shows that in Theorem 4.6 we can

replace the restriction k > 3/2 by k > 1 provided that g = 0. In fact,

St we need less namely that g Er E Hr(r,), ri c r r > 1.

4 -

. ..... ° .... . . ° . - ** .• _ ° ...... * 4 . *.-° . *** **
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4.3. The rate of convergence of the h-p version of the finite element

method

We will prove now

Theorem 4.8. Let u E Hk(U), k > 1 be the solution of (3.1)

(3.2). Assume further that g is such that

9.
•

9. U = I + u2

k- -

U H (a) nH )

u2 E H k2(), k2 > 3/2

and that Q is a Lipschitz domain if k, 3/2. Let uh  be the finite

element solution of (3.1)-(3.2) as defined in Section 3.2, then

(4.22a) I -U l c(k) -ill

(4.22b) k = min(kI k2)

(4.22c) P = min(p+1,k)

where C is independent of u, h, p but depends on Q, t, G.

Proof. If g = 0 then (4.22) follows immediately from Theorem 4.6

and (4.21).

If g # 0, then denote by Uh the exact solution of the problem

(3.1)-(3.2) when replacing g by gh. Denoting w = u - we see that

-AW + =0
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w 2 o
an

on r9 o

p

=k -'2by the imbedding theorem. Because

Iwt1,'. infjvj 1',

over all v E H1 (a) such that v= w on r', we have

IWIlQ CH c /2, r Chil

By Theorem 4I.6 and the basic properties of the finite element method we get

for any 01 EhQ

h iloh

<C(Iu- pI h1 + ju-Uh j )

SC hk--j-Iu 'k~T
p

anl Theorem 4.8 is proven.

4.14. Optimality of the asymptotic rate of convergence

* In this section we will prove that the estimate in Theorem 4i.3 is

optimal. To do so we will use the concept of the n-width. For details,

see eg. [17]. Denote
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Dn('(~~ H(~2 ) = inf sup inf ~V 1

Dn- H".) 1 k yES I -
SCH (a) uEH n

n

the n-width in the sense of Kolmogrov. Then by Theorem 2.5.1 and 2.5.2 of

Ell] we have

(4.23) Dn(H1UQ), Hk(Q2)) ',(-

Let us now compute the dimension of the space Vh(Q) in terms of p and h.
p

The number of elements is of order 0(-) Over each element we have
2

0(p2) polynomial basis functions. Hence, n =dim Vh(Q2) C Hence
P2

h
for p 1 > k we have

('4.24) IuhI, < C(k)( ~ <u~ C(k)n 2

Comparing (4.24) with (4~.23) we see that the estimate is optimal.

-A'
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5. THE CONVERGENCE RATE OF THE h-p VERSION. THE CASE OF THE SINGULAR

SOLUTION

In Section 4 we analyzed the rate of the h-p version when the solution

of (3.1) (3.2) has the form (3.4) with u3 - 0. Now we will analyze the

rate of convergence in the case u = u 3 . For simplicity and without a loss

of generality we will assume that n = 1 in (3.4c)

5.1. An approximation result

Consider the square R = R(h) defined in Section 2. Let (r,e)

denote the polar coordinates with the origin at 0 (see Fig. 5.1). For

K> 1 let S< be the subset of R bounded by the lines LK: x2 + h =

<(x 1 h) and L2: x, + h = K(x2 h). Let SP  be the region S< n {(r,e) I
• 2

r p} (0 < p )

We will consider the approximation of a function u with support in
'- 1 2
Sp  for some <, > K which vanishes on the lines L, L. We will assume

that the function u has the form

(5.1) u(r, ) = r'llog rl x (&),(e

where and X0 are sufficiently smooth functions (e.g. Co functions)

such that 0 < X0 _< 1, x0 (r) = 1 for 0 < r _ , X0 (r) = 0 for r _ L-

0 < P < '/ and D(e1 ) = t(e2 ) = 0 where 81, e2 are polar coordinates of

% the lines Li anad L2 .

Let Q be the region bounded by the lines L1  .2 and xI* . K0 ' U<O0 '

n h
2' x2 = - . We will estimate the approximation errcr

hi h 1."(.'.'L~ ~ I1,' " (R).
P - P

L ,

.- , . . -.1. , • . . - . . - . . ' . . - . . . . . . . . . . . . . , - . - , , , . . . . . , . . . . . . . . . . . . ; , .

w 'U ' ' ' . - " - ' . .-' .-' . " ..' . " . . .." - ' . . . . ' -. " " -. . ' ' ' ' ' ' , . . . .' ,
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(-h h) (hh)

R(h) E

hhP

2
(-h

(-h,-h) (--l -h) (h,-h)2'
Fig. 5.1. Scheme of R(h), Q, SP

* ."We first map R = R(h) onto the square R = R(I) by the transformation R,

x.
= -or equivalently ( ,B) = (L,e). This maps Q into . Then, if

= (r,a) we have

(5.2) ,) = harallog h~iz XO(P)(;)

where Q = 0 on the lines L and L the maps of and L. Since

, is by assumption a positive integer, we have for h, P < 1

,.. (5.3) C(r,6) = ' C(lz)h'>'Ilog hi log rjY ')"() = Xu.
,--- .=0 2. =0

By Theorem 5.1 of [5] there exists 2 p 2  such that Z 0o

p p+2kR -P h

lines and and

;m I Io oo g-i°I < n - l I log ;)I-
PP

Hence, we see that

" ; ' ,. . ..-' ' W , t . . . .. . +.. . .,.'+.- .'.'+. - . .. ' ' '.,,.+'' .°, .. .'- , , '-- -. ..- .
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Y

z =0 on E' and £2and ~ 2
p 1CK

(5.4)~2 IIpI ~ Ilog hl llog 1Y-2
p 2.=0

h a< C- max(log hiylo l)
- 2algpj)

By suitably changing the constant in (5.4), we see that we may obtain a

2pEPpP(R) satisfying (5.4). By Leimma 4.2 the same estimate holds for

Iu-z ,1,0 so that we have

Lemma 5.1. Let u be given by (5.1). Then there exists z
IP (R) such that z =0 on the lines L I and L2  and

pp C 1K

(5.5a) I - Cg(h,p,Y) haL
(5.S) IUp 1Q -2a

where

(5.5b) m~~,) =nax(Ilog hIy, ~Iog ply)

and C is a constant independent of p and h.

D.2. The rate of convergence of the h-p version

We now return to the problem of approximating the function u3 given

in (3.4d). To this end let

" 3  " 3 , 1 + 3,

where

'3,1 =u 3 X0 h
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(5.6b) U3 u(1-XOh)

Obviously U3,2  0 in the neighborhood of the origin.

Our first goal is to approximate u3,1  over the set of triangles or

parallelograms having a vertex at the origin as shown in Fig. 5.2.

B4 0

LemmaFig 5.2. Setcheen by t5.he wih in (it tedehito
of x0) uffi eig oroy smal (de endn oinguatyd. ol),te hr

ci=

er5]
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(5.7b) g(h,p,Y) - max(jlog hjl, jlog plY)

where C depends on a, T but is independent of p and h.

Let us consider now the function u = u3 ,2 given by (5.6b). We

' have u = 0 for r ph. Further,

.- IDou C( )ro'-IBI Ilog rlY

where S = (31'$2)' i - 0, a + a2 = 131 and

D u - lalu

x1  2

qr Hence we have

(5.8) < C(k)llog h[ max(1,ha+

Denoting by uh the finite element approximation of u, we get by Theorem
p

4.8

p

' - h n-I-

C(k) k-1 jiog h ly

with k > 1 arbitrary and n = rin(p+1,k). Let us take k = 2a + 1 in

(5.9). Then n - k + a - r - a - 1 = min(a,p-a) so that

min(a,p-a)
(5.-10) l-u la < c hlog hlyj

p

'-., If p is small with respect to a, we can select k so that

A.

,9m.
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'-.:h n- k+a/pk-1

C(k)h will be minimal. For example, with k = 2 we get

M(5.,1) u-u hll Q Cho Ilog hiy.

Combining the estimates for u3,1  and u3,2  we get

Theorem 5.3. Let u be given by (3.4d). Then there exists

E Vh () such that: . ., p Ip

h hmin(ap-i)
(5.12a) u-0 I Cg(hpY)min(h , 2a

p

(5.12b) g(h,p,Y) = max(flog hj"Y, flog pf Y)

and C depends on a, T but is independent of p and h.

Remark 1. When a is an integer and Y = 0, the estimate (5.12a) is

-4. very pessimistic, since the solution u given by (3.4d) is smooth. When

ai is an integer and Y > 0, then the estimate (5.12a) is a correct one.

Let us now summarize in one theorem the error estimate for the h-p

version with quasiuniform mesh and uniform p.

Theorem 5.4. Let Q be a polygonal domain as introduced in Section

2. Suppose that u, the solution of (3.1)-(3.2) can be written in the form

(3.4). Assume further if 1 < k, 3/2 that a is a Lipschitz domain.

Assume that ,ah is the finite element sol',tion with triangular and

p

' parallelogram elements satisfying (3.6) and the boundary condition on r

defined by (3.7). Then

-nMA,
lift.

r. .j ,% - l 
•

.(( . ,% . " . . .. . . ", ', " ,. " . % . . . . -. , , . % . . - 'o... .-% 
. . . . . .
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(5.13a) Iu-u 1 < C max )R
pi

min(oL ,P-Ci)
c i h. 2

(5.13b) = g(h,p,Y )min (h , h
i 2a.

p

(5.13c) g(h,p,Y i ) - max(flog hli ',log P Yi)

2 min(k -1 ,k - ,p)

h 1 '2

p

(5.13e) R = lUlIk 1, . + I 2 1k a + J
' 2',

and C depends on T, a in (3.4), 9, ki' Yi' Mi but is independent
~of Th , h, p, u.

Remark 2. We formulated Theorem 5.4 only in the frame of Sobolev

spaces. By interpolation arguments, it is also possible to formulate the

theorem in the frame of Besov spaces.

Remark 3. We addressed only the case of the polygonal domain and

elements which are triangles or parallelograms. By the standard mapping

approach, the -esllt3 are also valid for curvilinear elements.

r."

./" . • • .o i - .. • • ..
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6. APPLICATIONS

In this section we will study the consequences of Theor.m 5.4 in

connection with computations.

First let us mention that although we discussed the h-p version in

connection with the problem (3.1) (3.2), all conclusions are valid also for

the elasticity problem. In (3.4d) we assumed that at are real. In the

case of elasticity problem, i are in general complex with Re ai > 0.

The estimate (5.13) is still valid with a= Re ,i.

Our theory is of asymptotic character. Hence it is important to see

the applicability of Theorem 5.4. in the range of practical parameters. To

this end let us consider the plane strain elasticity problem when 0 is an

L-shape domain shown in Fig. 6.1.

"8 A

4;

X

Fig. 6.1. L-shaped plane elastic body.

Let -is assu.me that on ai tract-o, ar rsrbdie . The

Q-'nsar pecid, ie

solition cO this problem is the disDlacement v;ector (A!", 2) where

.-'. . x

;'- -Fi. 61. -sape plneelati body• ,
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(u = U, r'C(<-Q(oL+1))cos a® - a cos(a-2)0]
2C

(6.1b) u2  = r [(<+Q(a 1))sin ao- a cos(a-2)0]

where a = 0.544483737

Q = 0.543075579

".'G is the modulus of rigidity and < = 3 - 4v where v is Poisson's ratio

which we assume to be v = 0.3. The solution has a typical singularity at

0. The sides OA and OE are traction free. Instead of the norm we

will be interested in the energy norm I.mE which is equivalent to the

.1, norm. Denoting W(u), respectively W(uh), to be the strain

- energy of the exact, respectively the finite element solution, we have

(6.2) Iu-unIE (W(u)-W(uh))j
P p

and we define the relative error in the energy norm as

W(u)-W(u h) 
/2

(6.3) leIE,R - W(u) ] "

In the next figures we will present the results of computations which were

performed with a computer program called PROBE [20], [22] developed by

V Noetic Technologies Corporation, St Louis.

We will consider a uniform mesh with square elements as shown in Fig.

* 6.2.

4-.

'..
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I -T I -

Fi.62. Tesheeo teuior eh

The souin la;IQ, rbtay

Thoe . ivsfr p I th siae

p 2a

whr C dped Fin 6.2 bth ischnemenen f th u aior mes. Fg hw

Theeortiem erro give enorg p or lte estimate:feet eges '

wheen depend onh.W als busho inepe o h nd thA figr. 6. 3sow

that with respect to h the error is in the asymptotic range also f"or

moderate p and h.
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40

0-30 p:IX

p2

Ww 15 Z _

_ I

6_

2 4 6 10
MESH SIZE h

Fig. 6.3. The relative error in the energy norm in dependence on h.

Fig. 6.4 shows the error in dependence on p and different h. Because of

the size of computations, only in the case h = 2is the error given for

> 4. (For D = 4 and h - 1/10, the number of degrees of freedom N

5119). Estimate 6.4 gives the rate p2 which appears only for p > 3.

For large p and small h we have N p p/h 2  and hence

-uh

PUIE C
p

'6.5) snows that if the measure of computational work is N, then the use

of higher p is preferable.

p-4

"---.-

-+"

S'...
. .. . . .. . . . . . . . . . . . . . . ..th .eerg. no. .n.d pen ene.o.h
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40

0r3O

20

>r Z 10

h

7 h-I

6 Jo7. 8

I 2 3 4 5 6 78

DEGREE p OF ELEMENTS

Fig. 6.4. The relative error in the energy norm in dependence on p.

r=i : . . . -: .: ' / .- : -7 . - . . . . ..i- i "L .. , K _"i . ". " -.; : i . i .: = -" . -" , i - . , . - - . . .. . .. .



~37

Fig. 6.5 shows the dependence of the relative error in the energy norm

on the number of degrees of freedom N for various p. In

addition, the performance of the p-version for h = / is shown in the

figure. We see that p = 2 is more effective than P = 3, and

asymptotically for p , the higher p are more effective as follows

from (6.4). The p-version has a rate which is twice that of the h-version

(see also [5]).

We addressed in this paper only the case of the quasiuniform mesh. If

the mesh is strongly refined, then its performace is different. Fig. 6.6

shows the strongly refined mesh with n layers, (n-2). The mesh is a

geometric one with the ratio 0.15. The ratio 0.15 leads to nearly optimal

convergence. See [13], [14].

Fig. 6.7 compares the performance of the h, p version for the uniform

and strongly refined mesh for our example. The performance of the p-version

on strongly refined meshes is in practice very similar to the general h-p

version, leading to an exponential rate of convergence. We see that the p-

version performance depends very strongly on the mesh.

For more about the comparison between h, p and h-p version we refer

to [3].

*1

|;.-.-.
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- . -7. APPENDIX

Theorems 7.4 and 7.5 proven in this section are slightly generalized

forms of Lemma 4.7 and are of interest by themselves.

7 Let us consider the equilateral triangle T =ABC as shown in Fig.

7.1. Y

C C
-Y3  -Y3

P2  P3
4r y2 T y

A B

A:(OO) A B B=(I,)

Fig. 7.1. The scheme of the equilateral triangle.

We denote

A = Y~uB AP U PB AB,

= AUY AP U P C =AC,"2 2 2 2 2

Y = S yB C BP U = BC.
- 3 3 3 3

The notation is also shown in Fig. 7.1. Let f E P CYO Then we define

Kp
Zr

S%
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(7.1) F f(x~y) = € 3 f f (tdt.
F1  2y

X-

The value of F, at a point P E T depends only on the values f along

the segment QIQ 2 , QI (x- Y0), Q2  (x+ -, 0). We prove now the

following lemma.

Le a 7.1. Let f E P (Y ) and F f](x,y) be defined by (7.1).

Then

(7.2) a) FL f(xy) E P1 (T)
p

b) Ff](x,O) f(x)

c) IFct]

~ F f]
dj) IF" I < cI A 0 k 1

1 k,Y A k,Y A

d2) ,I < CIf 0 k I
kY 3

4 d3 ) IF f] I - CIfoj 0 k 1
k,Y 2  1

d I Ff]~IY ~f 0
d4 F< clflo,y. 0 k I

• -- €/ k,Y

where the constant C is independent of p and f.

*4A

'a *...

a-.. .. . . . . . .. ,-.--...,.-- ...... . . . . .



43

Proof. It is immediate that (7.2b) holds. Let f = xn  with 0 _ n <

p integer. Then

F(x,y) = T V/3 ~nd
2y t dt

V-3 [(x + y_)n+1 _ (x - )n ]
2y(n 1) V' V3

- VIT [(x+ -) - (x- X-)]P (X,y) = P (x,y) E P1 (T).
2y(n+1) r r n (n+1) n p

Hence (7.2a) holds.

To prove (7.2c) we first extend f to a function defined on the

entire x-axis R so that (see [18])

(7.3) If1l,R C I' ,-y

where we have used the same notation f to denote the extended function as

well. Then by (7.1) F1 (x,y) is well defined on the entire half plane 9 =

{(x,y) I y > 01. For (x,y) E i we have

(7.4) F1 (x,y) = f f(t)H(x-t,y)dt = (f H(,y))(x)

where

(7K5) H(x,y) 2y' T - - V

= 0 otherwise.

J..
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Let ( ) represent the Fourier transform of the function g(x) in the

x direction. Then by (7.4)

..." (7.6) l( ,y) = f(C)H( ,y)

where

'7.7) e(,y) = d e Xdx 1 sny/3

Let Q = {( ,Y) y > 01 and calculate the H (Q) norm of F1 (x,y). By

Parseval's equality, we have using (7.6)

IF1 1 - I~l2 1 1f 1( )1 2 H( ,y)l <d y"H" (a) H-U (2)

Uf -?C 2 IL R.... d dy ff j(12 R(,)2 d,ayCy 
d

Now letting z = yEIV we get, by (7.7),

f 1 ) 2dy /3 f E dz sin" '"; f 2 T7
:-."-] 0 0 z2  I <

- Hence

(7.9) ?, )2?H( Y 1(&

C-" 2 d2 < C~f 2  IfI2y

.- .

:. .Also
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.-"y [,y) = [ cosz sin z

DY ~z2

which is bounded at z 0. Hence

J .R (E,y)1 2 dy (CJJ

so that

(7.10) J I(E)J2 IL R(,,y)1 2d dy

< .:.. < < c _;. I ?( )12 d& _< fl,,y

The third term can be bounded analogously. Using (7.8)-(7-10), (7.2c)

follows. Inequalities (7.2d3), (7.2d 4 ) follow immediately for k = 0,

k = 1 and hence by an interpolation argument (see [8]) they hold for all

0 k<1.

We prove now (7.2d,). Let the variable x be used to represent both

the distance from A along Y, and the distance from A along Y2 "

Denoting

(7.11) G(x) 1 f(t)dt
x0

it is readily seen that

(7.12) IF IG(x)ikI I (0,/2 )
-jF k,Y 2

Using (9.9.1) of [15 ], p. 244 we get

o._ ..

;p.-
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Further, integrating (7.11) by parts we have

(7.141) G(X) =flx) N fO) - tf'(t)dt
0

and hence

G'(x) f I (x) + tf (t)dt f I (x)

x Ox

= -2 f (X-t)f'(t)dt f f'(t)dt.
x 0 0

Using 9.9.5 of [15], p. 2415 with r =2 we get

-and by 9.9.1 of [15], p. 2441 we get

0

Hence

'7.A5) I(x1 0 1' Cj jj

~ -ftcnbining (7.13) and (7.15) we get (7.2-di) for k =0 and k =1 and

hence by the interpolation argument (7.2dj) holds for all 0 k < 1. The
inqi 1 ( 7.2d) same as (7.2dj) and Lemma 7.1 is

2is essentially the

c':rpiete-7y proven.

-?P f

p.%*~g' _A.....
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Let now f - fi E P (Y.), i = 1,2,3. Then we denote by
p.

F (x,y) the polynomial extension of f4 into T, defined for i = 1

by (7.1) and for i = 2,3 by (7.1) after properly rotating the

coordinates. Obviously Lemma (7.1) is applicable for i = 1,2,3 when

properly interpreted through the rotation of the coordinates.

We now prove

Lea 7.2. Let T be the triangle as in Fig. 7.1 and f be a

continuous flanction on 3T, such that fi = fly E P (Yi) i = 1,2,3
1 p

where by fly we denote the restriction of f on Yi. Then there
i

exists DiE E Pp(yi ) , i = 1,2 such that

*.[01

(7.16) a) U = F1  + F2  E P (T)

b) U = fi on Yi, i = 1,2

c) IU11,T C[If1Iv ,, + 11 2

2
d1 ) ilk,y. C[ Ifjlk,y.], i = 1,2, 0 k 1

"" S d2) l%~1k,YB CC c fk,Y+jI fljo<k_

2
d2) P, I B C[1f11 B I i "j',y 0 Q k 1

900 k,Y1  k,Y1  j=1

2
d3 ) I 1f2C1 c I I fj1oy 0 k 1

kY 2  k,Y2  j=1

where C is a constant independent of p and f.

Proof. Let Vi E Pp(yi )" Then as in Lemma 1 we define

* -.... .



48

(7.17) Gi(x) = - D =(t)dt i 1,2
x0

Condition (7.16b) will be satisfied if

(7.18a) b,(x) + G(x) = *1(x) + x 2(t)dt = f1(x)

(7.18b) (D2(x) + G1 (x )  = D2(x) +4 x 1(t d 2 f (x)

hold for all x E I = (0,1). Since fi E P (1) it is easy to see

PP.'' that ti E Pp(I) satisfying (7.18) exist. Due to the assumption about

continuity of f on 3T we have f1(0) = f2(0) = C. i are uniquely

determined up to a constant K with tI(0) = K, 2(0 = C - K.

We now define

(7.19) w1(x) = 1 (x) + '2 (x), 2 (x) = 1(x) - 2(x)

h1 () f1 (x) + f 2(x), h 2(x) f f1 (x) f f2(x)

so that (7.18) yields

lx
(7.20a) 1(x) (t)dt hl(x)

0

(7.20b) (t)dt h (x )

_ ? ,2(t)dt = h-,(x).

.
" I .'- ':.
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Here 'i 1 (x) is unique, I(O) = C, while lP2(x) is uniqae up to the

constant K such that 2 (0) = 2K -C.

We first analyze (7.20a). By differentiation we obtain

- (t)dt + = hI .x 0 x1

Using (7.20a) we get

1 1 h
(7.21) , ~-- = h' + -

The homogeneous solution of (7.21) is --. A particular solution can be
x

found by using the method of variation of constants. Hence, substituting

.I(x) = T(x) into (7.21) we get

x
T'(x) = h'x2 + hlx

from which

WI (x) - 2 (t)dt + - th I (t)dt.
x 0 x 0

Integrating by parts we get

(7.22) 'P1(x) = h (x) - th1(t)dt.
x 0

the uniqLie solution of (7.20a)

We show now that

k.23 11' <hk <1

[6l -- , - -

4. 4 ..-.- 4 4 .-. 7 C ~--
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Let

x x x
F(x) =f th1 (t)dt f (X-t)h1 (t)dt + x f h (tOdt.

0 0 0

Then

F(x) G(x) Qx
2 2 ~ xx x

where

x
G(x) f (x-t)hl(t)dt

0

Q(x) = f hl(t)dt.
0

Using (9.9.4) of D5], p. 245 with r =2 and (9.9.1) of [15], P. 244 we

obtain

which yields (7.23) for k =0. Next, differentiating (7.22) we get

(7.24) ~ p' = h,' f - h1~ h? - hl t dt.

X 0 0O

Let

t 2 h;(t~ct = (x-t)2 ltd
0 0

0. 0

S'SWe have- then
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F(x) G(X) W +RX
X3 X3

where

x 2
GWx (x-t) h'(t)dt

f 1

0

Q(x) = I h1(t) dt

x

This gives

I xx310,1  Ix)X310,1 + IQWx110' J IRWx1 1

The first two terms can be bounded once more by 1h1 0', using (9.9.4) of

[15], p. 2J45 and (9.9.1), p. 2J44. Moreover,

RWx = 2 E -f (X-t)hl(t)dt +x f hl(t)dt]
x 0 0

so that 1R10 1, can also be bounded by I1h1 0,1. This yields (7.23) for k

=1. By the interpolation argument (see C83) we get immediately (7.23). Let

us consider now (7.20b). Differentiating it and using once more (7.20b) we

get

'7.25' 2 h2 +

* Integrating we get

- (7.26) ~p() =h 2 x - h(t dt.

1P (x (x K

4x
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(7.26) is that solution of (7'.20b) with J2(1) h,( 1)

Once more we wish to show

(7.27) [1 ,I CIh 0 O k 1

Using (7.26) and (9.9.9) from [2-~j, p. 245 with a 0 we get

I210,1  ~ 210,1

Since h2()=f()-f()=0 (7.25) yields

=h 2 +- f hl(t)dt
0

and by (9.9.1) of [L1], p. 244L we get

An interpolation argument leads immediately to (7.27). Hence we have

constructed solutions of (7.20a,b) such that (7.23) and (7.27) hold.

Coming back to (7.19), u.sing k = 2 we see that for i =1,2

1' C[1f1 Ix +If21Y'i 1121Y. 1112' 1 I~I, 2]

-and appl.ying Lemma 7.1 we get immediately (7.16c) and also (7.16d1 ).

Returning to (7.20) we see that with l* /2(,1

Hence also

2

If 1

I' ~,-...-.. - -
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which immediately leads to (7.16d2), (7.16d3).

The following lemma is taken from [61

Lemma 7.3. Let T be the triangle as before, f be continuous on

3T, f2 = f3 = 0 and fl E Pp( 1)
" Then there exists a polynomial

v E P1 (T) such that

p

<"IvlI, T C If 111 YI

v =f on Y

v = 0 on Y2Y

where C is a constant independent of f and p.

Theorem 7.4. Let T be the equilateral triangle shown in Fig. 7.1

- and f be a continuous function on 3T, such that f= fly E P (Y
i p i

i = 1,2,3. Then there exists U E PI(T) such that U = f on aT and
p

3, " -IuI1,T C< I[ If 1 ,17, .

where the constant C is independent of p and f.

Proof. Using Lemma 7.2 we see that without loss of generality we can

assume that f2 = f3 = 0.

Let fl # 0, f2 = 0. By Lemma 7.2 we construct 01' P2  and U =

F + F2
2 . Then U E P (T), U = fi on Y' i =1,2 and

21  p

* (7.28) I1rT -< dcl l,,y1

,."*. T* C f 12,-

'.'.,-- - _. , • .,'v..'' " ,. ._.,.,- ,'-,.','",:.: ..; '..'< ,-'-,. ...AOv -. -.": --.-.-..-. ..•..--.V. .',
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Denote by g3  the trace of U on Y3 " Then we have g3(B) - g3(C) 0

and

... : :(7.29) Ig1, y3 _ IVl,

by applying Lemmas 7.2 and 7.1.

Because of (7.16d I'D and hence using Lemma 7.1
- 1,Y2  1

we have also

(7.30) Ig31 c - Cfj,
1,Y 3 '2

Let now analogously as before

U1  = F 3  +F 1  .

so that

U IEpl(T), U1  - g3  on Y3, UI  - 0 on Y,

and

(7 3'1 I CIg_
11,T 3 11/2, y3 < f 2cl 1

Denote by gI the trace of UI  on Then g ](A) = g ](C) =0.

Because of (7.30), applying Lemma 7.1 and Lemma 7.2 analogously as before we

concl,4de that

I ,Y 2  3 C[Jgj c -+ I"

%]. Now applying Lemma 7.3 there is U2 E P1(T) such that

.",% "

*6 . ' " - -" " - " " ° " " " . " " " "" " " "" " " ' .- " ." ,. ". , 
" . °

" " ' , . " 
"

" " . , "
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(7.32) IUIT <~ 11 Y i
21 T g2  2~ 1,1 Y

and

U2  9 l on Y'2 U2  0 on Y1 , YV3

Let now

V =U -U 1 + U.

Then it is easy to see that V E P TV = f, on Yl on

Y and because of' (7.28), (7.31) and (7.32) we get
3

IV1T Cfl11,

which concludes the proof of Theorem 7.4.

Let S =(x,yl lxi < 1, IyI < 1) be a square and Y its sides as

shown in Fig. 7.2

Ay

D=(-II Y3 C=021)

K SX2

Fig. 7.2. The scheme of' the square.V.,
-.- . - i
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Theorem 7.5 Let S be the square shown in Fig. 7.2 and f be a

continuous function on 3S, such that fi fly.i E P p(Y1) i. J ,..4

*Then there exists U E P 2(S) such that U - f on aS and
p

14

lull's C( I N)il'

where the constant C is independent of p and if.

Proof,. Let T be triangle shown in Fig. 7.1 and Q {,f

( ,n) E T, n < 8}bethe trapezoid shown in Fig. 7.3.

F E

Fig. 7.3. Scheme of the trapezoid.

The mapping

1_3x 53V3
(72 16) + (- + (1+y) j~

maps S onto Q. The mapping is obviously one-to-one and the Jacobian and

its inverse are bounded.

.pV
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Let us first prove the theorem in the case that f 0, i - 2,3,4.

Denote (  = f(2 -1), 0 < < 1.

Obviously fl1(1) = = 0 and

.?, 1 /2 Cif 11/2,,

Let U E PI(T) such that U = fl on 1 and U = 0 on A and IC. By
p

Theorem 7.4, U( ,n) exists and

lfi
"1 Cifi"1/21

Because U E P1 (T) we have
p

.'.-!" ({,n) = Z ak,j~n

O<k+j<p

I 3x 5 k ) -

O<k+j<p ak,j(2 T6 (-+1)) ((1+ 6

= U(x,y) E P2 (S)
p

and

1Ull IS < clfl,/2,y I

Because f2 = ?3 = 0 we have U(±1,y) = 0, U(x,-1) =f and using Lemma

7.1, Lemma 7.2 we conclude by similar arguments as used in the proof of

Theorem 7.4 that

IU(x,1)11,y3 < C ifll /Yl "

,''3

9 " . " ," . " . " - ' . , ,".'•"•".. "" . "" - ° . ' . " % .i,"aj% i'.l='li '# "
a "
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Of course U(x,1) E P P(Y3 and U(±1,1) =0. Hence with

V 4U (x, 1)(y+1)

we see that

and V(x,l) =U(x,l). Hence W =U -V E P2(S), W = f on 3S and

The theorem is therefore proven in the case that if = 0 on three sides of

1 S and hence it holds also if if is general but if = 0 at the vertices

ABCD.

It remains to prove that in the general case there exist 0 E P2 (S)
p

* such that D has the same traces at ABCD as if and

J4

(7-3) I'I1IS C~1=1 If 1

[if 1  [if1]To this end we define F1  ( ,rj) by (7.1) and define F1  (x,y) by

inserting (7.33) for (&~,q). Then 'FI (,1, Y ~1I, and hence

CLnId ~ Changing the role of Yand Y we can

anaogoslyconstruct F E p2(S) so that3 p

3
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Hence (P= F F3 E P(Q has the same traces at ABCD as f and (7-34)

holds. This completes the proof of Theorem 7.5.

4B

B.'j L
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